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1 Introduction

There are many situations all over the world where one would like to know how the
subsurface is built up. Electromagnetic measurements with ground penetrating radar
(GPR) from the surface might give an answer, but problems arise if the volume of interest
is unreachable for such methods. For example in the oil and gas industry where the oil
containing sand layer of interest, especially the top and the bottom of an oil reservoir, is
simply to deep. In such case GPR measurements in a borehole is then a good solution
as long as the system is directional. Unfortunately, with these systems directionality is
often offset against penetration. The radar system we present fits in a single borehole. In
addition it combines directionality and large penetration by focusing the emitted energy.
The system has in both radial and angular direction a good resolution. First we discuss
the modeling and design of the antenna system which consists of an electric dipole and a
curved reflector. The radiation pattern of the antenna system is computed by first solving
the integral equation for the unknown electric surface current density on the reflector.
This is done via a FFT Conjugate Gradient method. Next the total electric wavefield is
computed using the integral representation over the dipole and the reflector. Finally we
discuss an imaging method to obtain a three-dimensional image of the subsurface. Here a
one step deconvolution of the measured data for the computed radiation pattern is carried
out. Imaging results based on both synthetic data and measured data will be shown.

2 Antenna Design

The antenna system contains an electric dipole which is partly shielded by a curved
reflector. In order to compute the effect of the reflector on the omni-directional radiation
pattern of the electric dipole antenna, an integral equation is derived. This equation
relates the known incident electric wavefield from the electric dipole antenna with the
unknown electric surface current density at the reflector. Once the discretised integral
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equation is solved, via a FFT Conjugate Gradient method, the electric wavefield from
the dipole shielded with the total reflector is computed. A numerical example will show
the focusing effect of the reflector and some experimental results are used to verify our
numerical results.

2.1 Antenna configuration

A position in the Cartesian coordinate system is denoted by the vector x = xi = (x, y, z)
whereas the same position is described in the orthogonal circular cylindrical coordinate
system by the vector v = vi = {x, r, φ}. The correspondence between both vectors is
given by

{x, y, z} = {x, r cos(φ), r sin(φ)} , (1)

see figure 1. Consequently the coordinate transformation matrices Tij and T−1
ij are defined

via
uxi(v) = Tijuvj(v) , uvi(v) = T−1

ij uxj(v) , (2)

where uxi(v) and uvi(v) are both positioned in the cylindrical coordinate system at v,
defined in the Cartesian and cylindrical coordinate system and pointing in the direction
xi and vi respectively. Note that we use Einstein’s summation convention for repeated
subscripts.
The dipole is defined in the cylindrical coordinate system in the spatial domain D,

D = {vi ∈ R3| − d1 < x < d1, r = d2, φ = d3} . (3)

Next to the dipole, a perfectly conducting rectangular circular cylindrical curved plate
acts as a reflector. The area A of this reflector is defined in the cylindrical coordinate
system as

A = {vi ∈ R3| − a1 < x < a1, r = a2,−a3 < φ < a3} . (4)

The configuration is embedded in a homogeneous medium with constant electric permit-
tivity ε, vacuum magnetic permeability µ0 and electric conductivity σ. Here permittivity
ε equals

ε = ε0εr , (5)

where ε0 equals the permittivity of vacuum and εr the relative permittivity of the medium.
Our analysis is carried out in the temporal Laplace domain, with Laplace parameter

s = −iω, where ω equals 2πf with f the frequency. Throughout this chapter we use the
symbol ˆ to indicate that the specified quantity is in this temporal Laplace domain.

2.2 Formulation of the integral equation

The electric part of the wavefield generated by the dipole, in absence of the reflector, is
denoted as Êdip

xi
(x). The total field in presence of the reflector is given by Êtot

xi
(x). Then,

the scattered field due to the presence of the reflector, is defined as Êsct
xi
(x),

Êsct
xi
(x) = Êtot

xi
(x)− Êdip

xi
(x) , ∀ x ∈ R3 . (6)
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Figure 1: The bistatic antenna configuration and the two coordinate systems: the Carte-
sian with unit vectors {êx, êy, êz} and the cylindrical with unit vectors {êx, êr, êφ}.

The wavefield from an electric dipole in a Cartesian coordinate system can be derived
from Maxwell equations and equals

Êdip
xi
(x) =

1

sε

(

−γ̂2δij +∇xi∇xj ·
)

∫

x′∈D

Ĝ(x|x′)Ĵdipxj
(x′)dA(x′)

=
1

sε

(

−γ̂2δij +∇xi∇xj ·
)

Âdip
xj
(x) , (7)

with
γ̂2 = s2

(

ε+
σ

s

)

µ0 , (8)

δij the Kronecker delta tensor, ∇xi∇xj · the gradient divergence operator, Ĝ(x|x
′) the

Green’s function of the medium, Âdip
xj
(x) the electric vector potential and where Ĵdipxj

(x′)
is obtained from a unit time domain delta pulse electric surface current density at the
dipole. Using the coordinate transformation matrices defined in equation (2), equation
(7) is formulated in a cylindrical coordinate system as

Êdip
vi
(v) =

1

sε

(

−γ̂2δij +∇vi∇vj ·
)

Âdip
vj
(v) , (9)

with

Âdip
vj
(v) = Tjk

∫

v′∈D

Ĝ(v|v′)T−1
kl Ĵ

dip
vl
(v′)dA(v′) . (10)

The scattered wavefield is caused by an electric surface current density at the surface of
the reflector, due to the presence of the incident electric wavefield, and is given by

Êsct
vi
(v) =

1

sε

(

−γ̂2δαj +∇vi∇vj ·
)

Âsct
vj
(v) , (11)
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with

Âsct
vj
(v) = Tjk

∫

v′∈A

Ĝ(v|v′)T−1
kl Ĵ

rfl
vl
(v′)dA(v′) , (12)

where Ĵ rflvm(v
′) =

{

Ĵ rflx (v
′), 0, Ĵ rflφ (v

′)
}

are the two unknown surface current densities at the

reflector. At this surface, electromagnetic boundary conditions require that components
of the total electric field, Êtot

vi
(v), tangential to this surface vanish and therefore

Êsct
vα
(v) = −Êdip

vα
(v) , ∀ v ∈ A , ∀ α ∈ {1, 3} , (13)

where we use Greek subscripts α and β to denote the tangential character of the quantity.
Taking the point of observation on the reflector, we end up with following integral equation

−Êdip
vα
(v) =

1

sε

(

−γ̂2δαj +∇vα∇vj ·
)

Âsct
vj
(v) , (14)

where the vector potential Âsct
vj
(v) is defined in (12).

2.3 Solution of the integral equation

Combining equations (14) and (12) we write the integral equation as

−Êdip
vα
(v) =

1

sε

(

−γ̂2δαj +∇vα∇vj ·
)

Tjk

∫

v′∈A

Ĝ(v|v′)T̃−1
kβ Ĵ

rfl
vβ
(v′)dA(v′) , (15)

in which we have defined the following known and unknown quantities:

Ĵ rflvβ(v) =

(

Ĵ rflx (v)

Ĵ rflφ (v)

)

, Êdip
vα
(v) =

(

Êdip
x (v)

Êdip
φ (v)

)

, (16)

the matrices

T̃−1
kβ =





1 0
0 − sin(φ)
0 cos(φ)



 , Tjk =





1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)



 , δαj =

(

1 0 0
0 0 1

)

, (17)

and the gradient divergence operator

∇vα∇vj · =











∂2x
1

r
∂x∂rr

1

r
∂x∂φ

1

r
∂φ∂x

1

r2
∂φ∂rr

1

r2
∂2φ











. (18)

Note that the T̃−1
kβ is obtained from T−1, the inverse of T. Equation (15) is solved nume-

rically using a discretisation procedure as suggested by Zwamborn and van den Berg [1].
Therefore we approximate the differential operator of equation (18) by a finite difference
operator [2]. Furthermore the plate domain is discretised into subdomains Amn as shown
in figure 2, viz.

Amn = {v ∈ R3|xm−1 < x < xm, r = a2, φn−1 < φ < φn} , (19)
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Figure 2: The discretisation of the plate domain A into subdomains Amn.

for

xm = m∆x , for m = −M, . . . ,M , (20)

φn = n∆φ , for n = −N, . . . , N . (21)

The quantities Êdip
vα
(v) and Ĵ rflvα(v) are defined on a staggered grid as shown in figure 2,

Êdip
vα
(v) =

(

Êdip
xmn

Êdip
φmn

)

=

(

Êdip
x (m∆x, a2, (n−

1
2
)∆φ)

Êdip
φ ((m−

1
2
)∆x, a2, n∆φ)

)

, (22)

for m = −M, . . . ,M and n = −N, . . . , N ,

Ĵ rflvβ(v) =

(

Ĵ rflxmn

Ĵ rflφmn

)

=

(

Ĵ rflx (m∆x, a2, (n−
1
2
)∆φ)

Ĵ rflφ ((m−
1
2
)∆x, a2, n∆φ)

)

, (23)

for m = −M, . . . ,M and n = −N, . . . , N .
The consequently obtained discretised integral equation is solved using a FFT Conju-

gate Gradient method as in [1]. Therefore we replace our integral equation by an operator
equation, viz.

fvα = (Lj)vα , (24)

where fvα is obtained from the known incident wavefield, and (Lj)vα the operation L applied
on the electric surface current density j on the reflector. Furthermore, we define the L2

norm via the inner product of two vectorial quantities in the spatial domain A, viz.

‖uvα‖
2
A = 〈uvα , uvα〉A

=
M−1
∑

m=−M+1

N
∑

n=−N+1

ux;mnux;mna2∆x∆φ+
M
∑

m=−M+1

N−1
∑

n=−N+1

uφ;mnuφ;mna2∆x∆φ ,

(25)

in which the overbar denotes the complex conjugate. To quantify the residual fvα − (Lj)vα
for equation (24) we define the error norm

rvα =
∥

∥fvα − (Lj)vα
∥

∥

A
. (26)
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Figure 3: The normalized error ERR as a function of the number of iterations.

Finally, the normalized error function ERR which is minimized is defined as

ERR =
‖rvα‖A
∥

∥

∥Ê
dip
vα

∥

∥

∥

A

. (27)

2.4 Numerical and experimental results

Simulations are carried out to design an optimal configuration. The dipole is positioned
at a radial distance of approximately 0.05 m. The reflector is positioned at the same
radial distance and curved over approximately 150◦ and we use 26 cells in the x-direction
and 16 cells in the φ-direction. The system is embedded in a non-conducting medium,
σ = 0, with relative permittivity εr = 80. Computations are carried out for the 100 MHz
components of the electromagnetic wavefields and the iterative process is stopped when
the normalized error satifies ERR ≤ 0.01. In figure 3 we present the normalized error as a
function of the number of iterations. The results for the electric surface current densities
are shown in figure 4. From this figure we observe that the components of the current
densities normal to the edges vanish, as we expect. But the components tangential to the
edges tend to large values, in fact theoretically they should grow to infinity.
Using these surface currents we compute the scattered and total electric wavefields. In

figures 5(a) and 5(b) the total electric wavefield in the plane x = 0 and y = 0 are shown.
Clearly visible is the effect of the presence of the reflector on the radiation pattern of a
dipole. However, the aim is not only to disturb the omni-directional radiation pattern
of an electric dipole but also to increase penetration into the subsurface by focusing the
wavefield. Therefore it is interesting to compute the gain factor |E tot|/|Edip|, as shown in
figures 6(a) and 6(b).
Based on this design a prototype antenna system is built for experimental verification

of the antenna model. The radiation pattern of this prototype is measured at a radial
distance of r = 0.3 m in the plane x = 0. In figure 7 the measured and computed
radiation patterns are shown. Both curves are normalized by putting their maximum
values to unity. We observe an excellent agreement between both curves.
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Figure 4: The electric surface current density at the surface of the reflector: (a) the
absolute value of Jx and (b) the absolute value of Jφ.
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Figure 5: The computed total electric wavefield in the plane (a) x = 0 and (b) y = 0.
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Figure 7: The computed (solid line) and measured (crosses) normalized radiation pattern.

8



Table 1: Description of the states A and B for the spatial domain D
state A state B

{ÊA
p , Ĥ

A
q } = {Ê

bg
p , Ĥbg

q } {ÊB
p , Ĥ

B
q } = {Ê

tot
p , Ĥtot

q } = {Ê
bg
p + Êsct

p , Ĥbg
q + Ĥsct

q }

{η̂A, ζ̂A} = {η̂bg, ζ̂} {η̂B, ζ̂B} =
{(

η̂sct, ζ̂
)

,
(

η̂bg, ζ̂
)}

{x ∈ Dsct,x 6∈ Dsct}

{ĴAp , K̂
A
q } = {0, 0} {ĴBp , K̂

B
q } = {0, 0}

3 Imaging Based on Back Propagation

The imaging algorithm described in this section is based on a deconvolution of the mea-
sured data for the previously computed radiation pattern of the antenna system. Starting
with the reciprocity theorem an integral equation is derived which describes the change
of impedance of the antenna system as a function of the change in contrast in the back-
ground medium. An approximate solution of this integral equation, and consequently a
3D image of the subsurface, is obtained via a one step inversion procedure, the so called
back propagation.

3.1 Change of antenna impedance due to anomalies in the back-

ground medium

The reciprocity theorem [3] is used to correlate two field states occurring in the same
spatial domain D. In figure 8, the two states A and B are shown as described in table 1.
In state A, the closed surface ∂D with normal νi encloses the source free spatial domain D
which is a homogeneous background medium that is, in addition, linear, time-invariant,
instantaneously reacting, locally reacting and isotropic in its electromagnetic behaviour.
The medium is described by the parameters η̂bg(x),

η̂bg(x) = σbg(x) + sεbg(x) , (28)

and ζ̂,
ζ̂ = sµ0 . (29)

The domain encloses an inaccessible volume action antenna source domain Dsrc 6⊂ D
which contains the transmitting and receiving antennas. The only fields present are the
electromagnetic background wavefields. In state B, we have the same spatial domain D
and the same medium parameters where in this case the boundary ∂D also encloses a
domain Dsct, due to the presence of an object with medium parameters η̂sct(x) and ζ̂.
For these two states the reciprocity theorem is written as

εm,r,p

∫

x∈∂D

νm

[

ÊA
r (x)Ĥ

B
p (x)− ÊB

r (x)Ĥ
A
p (x)

]

dA

− εm,r,p

∫

x∈∂Dsrc

νm

[

ÊA
r (x)Ĥ

B
p (x)− ÊB

r (x)Ĥ
A
p (x)

]

dA

=

∫

x∈D

−[ηBr,k(x)− ηAk,r(x)]Ê
A
r (x)Ê

B
k (x)dV . (30)
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Figure 8: Two states of the same spatial domain D with boundary ∂D and with inac-
cessible volume action antenna source domain Dsrc 6⊂ D. The source domain contains
a receiving and transmitting antenna. In state A (a) the electromagnetic properties are
η̂A(x) = η̂(x) and ζ̂A = ζ̂, and state B (b) has the same background medium and a
scattering domain Dsct ⊂ D, with η̂B(x) = η̂sct(x) and ζ̂B = ζ̂.

The first integral over the outer boundary vanishes, since in both states the medium
parameters outside ∂D are the same, and since there are no sources outside ∂D. The
boundary integral over the source domain can be approximated as follows by putting, in
the low frequency range,

Êi(x) = −∂iφ̂(x) , (31)

where φ̂ is the electric potential. Using Stokes’ theorem the integral over the boundary
of the source domain is obtained as

εm,r,p

∫

x∈∂Dsrc

νm

[

ÊA
r (x)Ĥ

B
p (x)− ÊB

r (x)Ĥ
A
p (x)

]

dA =

∫

x∈∂Dsrc

νm

[

φ̂A(x)η̂B(x)ÊB
m(x)− φ̂B(x)η̂A(x)ÊA

m(x)
]

dA . (32)

The antennas in the source domain are described as perfect conductors which form a
N-ports system, where each termination port has a surface Aα, for α = 1, . . . , N . Since
the electric potential φ̂A,B(x) is constant over such a termination port, each terminal α
has a constant potential V̂α. At each port the Maxwell current density Ĵk(x) + sD̂k(x)
is dominated by the electric current density Ĵk(x) in the low frequency approximation
and consequently the electric line current density Iα is used. So from the constitutive
relations in combination with the electromagnetic boundary conditions the right-hand
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side of equation (32) is written as a finite summation over the terminals, i.e.,

∫

x∈∂Dsrc

νm

[

φ̂A(x)η̂B(x)ÊB
m(x)− φ̂B(x)η̂A(x)ÊA

m(x)
]

dA

=
N
∑

α=1

∫

x∈Aα

νm

[

φ̂A(x)ĴBm(x)− φ̂B(x)ĴAm(x)
]

dA

=
N
∑

α=1

[

V̂ A
α Î

B
α − V̂ B

α Î
A
α

]

. (33)

The electric potentials and line current densities in the antennas are coupled via the
impedance matrix Ẑαβ as

V̂α = Ẑαβ Îβ for {α, β} = 1, . . . , N . (34)

Combining equations (30), (32) and (33) with the state descriptions as formulated in
table 1 results in

δẐαβ Î
A
α Î

B
β = −

∫

x∈D

[ηB(x)− ηA(x)]ÊA
k (x)Ê

B
k (x)dV , (35)

where δẐαβ is the difference in impedance between two states,

δẐαβ = ẐA
αβ − ẐB

αβ . (36)

The electric field strength is linearly dependent on the electric line current density ÎA,Bα ,
so

ÊA,B
k (x) = êA,Bα;k (x)Î

A,B
α , (37)

in which êAα;k = êbgα;k and ê
B
α;k = êtotα;k are the electric field strengths caused by their unit

current densities. Substitution of equation (37) in equation (35) gives an integral equation
describing the change of impedance, δẐαβ, due to an anomaly δη̂(x) = η̂bg(x)− η̂sct(x) in
the background medium, viz.,

δẐαβ =

∫

x∈D

δη̂(x)êbgα;k(x)ê
tot
β;k(x)dV . (38)

This integral equation will serve as a starting point for the imaging algorithm.

3.2 Measuring in bistatic mode

Based on the design presented in section 2 of this chapter a bistatic antenna system
has been built. Applying equation (34) to this setup, (N = 2), we obtain the following
equation

V̂2 = Ẑ21Î1 + Ẑ22Î2 , (39)

where V̂2 represents the voltage measured at the receiver, Î1 the electric source current at
the transmitter, Ẑ21 the mutual impedance of the transmitter and the receiver and Ẑ22
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Figure 9: The setup in bistatic mode.

the self impedance of the receiver. Note that we assume the medium to be reciprocal and
consequently Ẑ12 = Ẑ21. Since the receiver voltage is measured over an open end port,
the current through the receiver equals zero, Î2 = 0. Therefore the measured voltage at
the receiver, V̂2, in equation (39) equals

V̂ rec = Ẑ12Î
trans , (40)

since V̂2 = V̂ rec and Î1 = Îtrans.
In figure 9 it is shown how in a bistatic setup measurements take place at ‘discrete’

positions v(k) for the system, viz.

v(k) = (x(k), 0, φ(k)) . (41)

Adapting integral equation (38) for these discrete positions and combining it with the
results shown in equation (40), we obtain the following integral equation

δV̂ rec(v(k))

Îtrans
=

∫

v∈D

δη(v)Ŝ(v|v(k))dV , (42)

in which the sensitivity function Ŝ(v|v(k)) describes the combination of the transmitter
and receiver patterns of the antenna system,

Ŝ(v|v(k)) = Ŝ(x− x(k), r, φ− φ(k))

= êtrans;bgj (x− x(k) +
1

2
d, r, φ− φ(k))êrec;bgj (x− x(k) −

1

2
d, r, φ− φ(k)) , (43)

where êtrans;bgj (v) and êrec;bgj (v) are the electric wavefields in the background medium pro-
duced by an electric unit current at the transmitter and the receiver position, respectively.
These radiation patterns are approximately equal to the patterns computed at the cen-
tral frequency of 100 MHz. Note that the Born approximation is used to approximate
êrec;totj (v) by êrec;bgj (v). Besides, we assume the contrast to be frequency independent,
δη̂(v) = δη(v).

12



In view of the presence of convolution and periodicity in the angular direction, we take
advantage of the properties of discrete Fourier series. This series is defined as

f(φ) =
∞
∑

n=−∞

f (n)einφ , (44)

where

f (n) =
1

2π

2π
∫

φ=0

f(φ)e−inφdφ . (45)

Applying these discrete Fourier transforms to equation (42) leads to decoupled equations
in the discrete angular Fourier domain

δV̂ (n);rec(x(k))

Îtrans
=

∞
∫

x=−∞

∞
∫

r=0

δη(n)(x, r) Ŝ(n)(x − x(k), r)rdrdx ∀ n = −∞, . . . ,∞ , (46)

where

Ŝ(n)(x, r) =
1

2π

2π
∫

φ=0

e−inφŜ(x, r, φ)dφ , (47)

δV̂ (n);rec(x(k)) =
1

2π

2π
∫

φ=0

e−inφδV̂ rec(x(k), φ)dφ , (48)

and

δη(n)(x, r) =
1

2π

2π
∫

φ=0

e−inφδη(x, r, φ)dφ . (49)

Replacing the latter integrals by finite summations using a trapezoidal integration rule,
we arrive at

Ŝ(n)(x, r) =
1

2π

M
∑

m=1

e−inm∆φ(k)

Ŝ(x, r,m∆φ(k))∆φ(k) , (50)

δV̂ (n);rec(x(k)) =
1

2π

M
∑

m=1

e−inm∆φ(k)

δV̂ rec(x(k),m∆φ(k))∆φ(k) (51)

and

δη(n)(x, r) =
1

2π

M
∑

m=1

e−inm∆φ(k)

δη(x, r,m∆φ(k))∆φ(k) , (52)

where M∆φ(k) = 2π. After an estimate in the angular Fourier domain for δη(n)(x, r) for
−N ≤ n ≤ N is obtained, an image of the contrast δη(x, r, φ) in the spatial domain is
derived from

δη(x, r, φ) =
N
∑

n=−N

δη(n)(x, r)einφ . (53)
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3.3 Imaging in bistatic mode

In order to obtain an estimate for δη(n)(v) we define the following error functional F (n),

F (n) =
∑

x(k)

∑

ω

∣

∣

∣

∣

∣

δV̂ (n);rec(x(k), ω)

Îtrans

−

∞
∫

x=−∞

∞
∫

r=0

δη(n)(x, r)Ŝ(n)((x, r)|(x(k), r), ω)rdrdx

∣

∣

∣

∣

∣

∣

2

∆x(k)∆ω . (54)

Using the following notation in the functional F (n) for δη(n)(x, r)

δη(n)(x, r) = α(n)∆η(n)(x, r) , (55)

where α(n) is a real constant and ∆η(n)(x, r) is an update direction, this functional tends
to its minimum when α(n) satisfies

α(n) =

<







∑

x(k)

∑

ω

δV̂ (n);rec(x(k), ω)

Îtrans





∞
∫

x=−∞

∞
∫

r=0

∆η(n)(x, r)Ŝ(n)((x, r)|(x(k), r), ω)rdrdx





∗





∑

x(k)

∑

ω

∣

∣

∣

∣

∣

∣

∞
∫

x=−∞

∞
∫

r=0

∆η(n)(x, r)Ŝ(n)((x, r)|(x(k), r), ω)rdrdx

∣

∣

∣

∣

∣

∣

2 .

(56)
We interchange the summations and the integrations in the numerator in the right-hand
side of this equation. Then we observe that, apart from a constant, this numerator is
maximized by taking the update direction to be

∆η(n)(x, r) =
∑

x(k)

∑

ω

(

Ŝ(n)(x− x(k), r, ω)
)∗ δV̂ (n);rec(x(k), ω)

Îtrans
. (57)

Substituting this direction in the numerator of the right-hand side of equation (56) we
observe that the constant α(n) equals

α(n) =

∞
∫

x=−∞

∞
∫

r=0

∣

∣∆η(n)(x, r)
∣

∣

2
rdrdx

∑

x(k)

∑

ω

∣

∣

∣

∣

∣

∣

∞
∫

x=−∞

∞
∫

r=0

∆η(n)(x, r)Ŝ(n)(x− x(k), r, ω)rdrdx

∣

∣

∣

∣

∣

∣

2 . (58)

Note that α(n) is indeed real and independent of the parameters x, r and ω. Furthermore
it is noted that the update direction of equation (57) represents the back propagation of
the data from the data domain to the domain of observation. A summation of the update
directions over all angular contributions leads to a first image of the contrast δη(v) in the
subsurface, viz.

δη(v) =
N
∑

n=−N

∆η(n)(x, r) . (59)
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An improved image is obtained when we take into account the minimization constant
α(n). In that case δη(v) is obtained via

δη(v) =
N
∑

n=−N

α(n)∆η(n)(x, r) . (60)

Note that this minimization procedure is in fact the initial iteration of a conjugate
gradient inversion method. By applying such a scheme, further improvements may be
achieved, as shown previously for a synthetic example [4]. In the next subsection we
present some results based on the two imaging procedures of equations (59) and (60).
The former procedure is denoted as the back propagation algorithm, while the latter is
denoted as the minimized back propagation algorithm.

3.4 Imaging Results

Both the back propagation and the minimized back propagation algorithms are tested
on synthetic and measured data. In both cases ‘measurements’ take place at 64 angular
positions.
First we consider a synthetic case, where the homogeneous background medium is

characterized by the parameters σ = 0 and εr = 80. At a radial distance of two meter
in the plane x = 0 a point scatterer is positioned with medium parameters εr = 160 and
σ = 1 S/m. Synthetic data are obtained using equation (42). Results from both image
processing procedures are given in figures 10(a) and 10(b). In these figures the computed
contrast δη(v) is shown in the plane x = 0. Comparing the results of the two procedures,
we observe the expected increase in resolution in the angular direction.
Secondly, we consider a field data set where the data are obtained with the antenna

system positioned in a swimming pool. As scattering object, a metallic gas bottle is
positioned in front of the system at a radial distance of two meters. Since the source
wavelet and thus the frequency spectrum of the electric current density at the transmitter
is unknown, we simply take Îtrans to be equal to one in the image procedure. The mea-
sured voltage, contains the signals due to reception of both the direct and the scattered
electromagnetic waves. These data are corrected for the direct wave, by subtracting the
first trace, φ = 0, from the data set of each trace. The corrected data, shown in figure 11,
are used as input data for both the back propagation and the minimized back propagation
algorithm. The image results are shown in figures 12(a) and 12(b). The figures show the
computed contrast for the plane x = 0.
Comparing the results of the synthetic and the measured example we observe a similar

behaviour of the angular dependence of the image distributions.
There are great similarities between the images based on synthetic and measured data,

especially in the angular direction. The blurring effect in the radial direction in the image
from the measured data is caused through antenna ringing. This effect should be but isn’t
taken into account in the transmitter current where as source wavelet an impulse function
in time is taken. Therefore a deconvolution for the wavelet is omitted and consequently
the algorithm will ‘interpret’ the long ringing wavelet as being caused by several reflections
from a couple of objects behind each other.
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Figure 10: The computed contrast obtained from synthetic data, via (a) back propa-
gation: δη(n)(x, r) = ∆η(n)(x, r) and (b) minimized back propagation: δη(n)(x, r) =
α(n)∆η(n)(x, r). The crosses denote the position of the antenna system in the center
and the object at a radial distance of two meters.
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Figure 11: The measured receiver voltage as a function of time and angular position.
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Figure 12: The computed contrast for measured data based on (a) back propaga-
tion: δη(n)(x, r) = ∆η(n)(x, r) and (b) minimized back propagation: δη(n)(x, r) =
α(n)∆η(n)(x, r). The crosses denote the position of the antenna system in the center
and the object at a radial distance of two meters.

4 Conclusions

In this chapter we have discussed the antenna design of a directional borehole radar sys-
tem. The modeling of the shielded antenna of this radar system was formulated as an
integral equation for the unknown electric surface current density at the surface of the
perfectly conducting reflector. This integral equation was numerically solved using an ite-
rative conjugate gradient method; its efficiency was enhanced using a FFT routine for the
computation of the convolution in the antenna direction. Based on the modeling results
a prototype antenna system was built. The measured radiation pattern was compared
with the computed one and they were in close agreement. Furthermore, a simple imaging
algorithm based on back propagation has been proposed. Using the computed radiation
pattern in this imaging procedure, a deconvolution of the radiation pattern in the angular
direction was carried out. Finally we have improved this image procedure by carrying
out a minimization procedure where the back propagation is used as an update direction.
The result is an increase in angular resolution. We expect improved resolution in radial
direction when we take the correct source wavelet. In practice a proper estimate of this
source wavelet is difficult to obtain.
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