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In this paper we present the simulation and design of a directional borehole radar. In addition
we discuss an imaging method for the radar system. The antenna system contains an electric
dipole which is in one direction shielded by a cylindrical perfectly conducting reflector. The
radiation pattern of the reflected wavefield is computed by first solving the integral equation.
This equation combines the unknown electric surface current density on the reflector and the
known incident field from the electric dipole. Once the electric surface current density is known,
the radiation pattern of the system is computed using the integral representation over the
reflector and the dipole. The radiation patterns for various configurations have been computed
in order to find an optimal configuration. A prototype of the antenna system based on an
optimal configuration has been built, and the directional radiation pattern has been measured
in the plane perpendicular to the antenna system. The measurements were in good agreement
with the computations. Subsequently a three dimensional imaging method for the borehole
radar is presented. Here a deconvolution is carried out in the angular direction, making use of
the computed radiation pattern. Some imaging results will be shown.
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1. Introduction

There are many situations all over the world where one would like
to know how the subsurface is built up. Electromagnetic measurements with
ground penetrating radar (GPR) from the surface might give an answer,
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but problems arise if the volume of interest is unreachable for such methods.
For example, in the oil and gas industry where the oil containing sand layer
of interest, especially the top and the bottom of an oil reservoir, is simply
to deep. In such case GPR measurements in a borehole is then a good
solution as long as the system is directional. Unfortunately, with these sys-
tems directionality is often offset against penetration. The radar system we
present fits in a single borehole. In addition it combines directionality and
large penetration by focusing the emitted energy. The system has in both
radial and angular direction a good resolution. First we discuss the model-
ing and design of the antenna system which consists of an electric dipole
and a curved reflector. The radiation pattern of the antenna system is com-
puted by first solving the integral equation for the unknown electric surface
current density on the reflector. This is done via a FFT Conjugate Gradient
method. Next the total electric wavefield is computed using the integral
representation over the dipole and the reflector. Finally we discuss an imag-
ing method to obtain a three-dimensional image of the subsurface. Here a
one step deconvolution of the measured data for the computed radiation
pattern is carried out. Imaging results based on both synthetic data and
measured data will be shown.

2. Antenna Design

The antenna system contains an electric dipole which is partly
shielded by a curved reflector. In order to compute the effect of the reflector
on the omni-directional radiation pattern of the electric dipole antenna, an
integral equation is derived. This equation relates the known incident elec-
tric wavefield from the electric dipole antenna with the unknown electric
surface current density at the reflector. Once the discretized integral equa-
tion is solved, via a FFT Conjugate Gradient method, the electric wavefield
from the dipole shielded with the reflector is computed. A numerical
example will show the focusing effect of the reflector and some experimental
results are used to verify our numerical results.

2.1. Antenna Configuration

A position in the Cartesian coordinate system is denoted by the vec-
tor xGxiG(x, y, z) whereas the same position is described in the orthogonal
circular cylindrical coordinate system by the vector vGûiG{x, r, φ}. The
correspondence between both vectors is given by

{x, y, z}G{x, r cos(φ ), r sin(φ )}, (1)
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Figure 1. The bistatic antenna configuration and the two coordinate systems: the Cartesian
with unit vectors {êx , êy , êz} and the cylindrical with unit vectors {êx , êr , êφ }.

see Figure 1. Consequently the coordinate transformation matrices Tij and
T−1ij are defined via

uxi(v)GTijuû j(v), uûi(v)GT
−1
ij uxj(v), (2)

where uxi(v) and uûi(v) are both positioned in the cylindrical coordinate sys-
tem at v, defined in the Cartesian and cylindrical coordinate system and
pointing in the direction xi and ûi respectively. Note that we use Einstein’s
summation convention for repeated subscripts.

The dipole is defined in the cylindrical coordinate system in the spatial
domain �,

�G{ûi∈�3 �Ad1FxFd1 , rGd2 , φGd3}. (3)

Next to the dipole, a perfectly conducting rectangular circular cylindrical
curved plate acts as a reflector. The area � of this reflector is defined in the
cylindrical coordinate system as

�G{ûi∈�3 �Aa1FxFa1 , rGa2 , −a3FφFa3}. (4)

The configuration is embedded in a homogeneous medium with constant
electric permittivity ε , vacuum magnetic permeability µ0 and electric con-
ductivity σ . Here permittivity ε equals

εGε0ε r , (5)

where ε0 equals the permittivity of vacuum and ε r the relative permittivity
of the medium.
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Our analysis is carried out in the temporal Laplace domain, with
Laplace parameter sG−iω , where ω equals 2π f with f the frequency. We
use the symbol ˆ to indicate that the specified quantity is in this temporal
Laplace domain.

2.2. Formulation of the Integral Equation

The electric part of the wavefield generated by the dipole, in absence
of the reflector, is denoted as Êdip

xi (x). The total field in presence of the
reflector is given by Ê tot

xi (x). Then, the scattered field due to the presence of
the reflector, is defined as Ê sct

xi (x),

Ê sct
xi (x)GÊ tot

xi (x)AÊdip
xi (x), ∀x∈�3. (6)

The wavefield from an electric dipole in a Cartesian coordinate system can
be derived from Maxwell equations and equals

Êdip
xi (x)G

1

sε
(−γ̂ 2δ ijC∇xi∇xj · ) �

x′∈�

Ĝ(x �x′ )Ĵdip
xj (x′ ) dA(x′ )

G
1

sε
(−γ̂ 2δ ijC∇xi∇xj · )Â

dip
xj (x), (7)

with

γ̂ 2Gs2�εCσs �µ0 , (8)

δ ij the Kronecker delta tensor, ∇xi∇xj · the gradient divergence operator,
Ĝ(x �x′) the Green’s function of the medium, Âdip

xj (x) the electric vector
potential and where Ĵdip

xj (x′ ) is obtained from a unit time domain delta pulse
electric surface current density at the dipole. Using the coordinate trans-
formation matrices defined in Eq. (2), Eq. (7) is formulated in a cylindrical
coordinate system as

Êdip
ûi (v)G

1

sε
(−γ̂ 2δ ijC∇ûi∇û j · )Â

dip
û j (v), (9)

with

Âdip
û j (v)GT jk �

v′∈�

Ĝ(v �v′ )T−1kl Ĵ
dip
ûl (v′ ) dA(v′ ). (10)

The scattered wavefield is caused by an electric surface current density at
the surface of the reflector, due to the presence of the incident electric wave-
field, and is given by

Ê sct
ûi (v)G

1

sε
(−γ̂ 2δα jC∇ûi∇û j · )Â

sct
û j (v), (11)
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with

Â sct
û j (v)GT jk �

v′∈�

Ĝ(v �v′ )T−1kl Ĵ
rfl
ûl (v′ ) dA(v′ ), (12)

where Ĵ rfl
ûm(v′ )G{Ĵ rfl

x (v′ ), 0, Ĵ rfl
φ (v′ )} are the two unknown surface current

densities at the reflector. At this surface, electromagnetic boundary con-
ditions require that components of the total electric field, Ê tot

ûi (v), tangential
to this surface vanish and therefore

Ê sct
ûα (v)G−Êdip

ûα (v), ∀v∈�, ∀α∈{1, 3}, (13)

where we use Greek subscripts α and β to denote the tangential character
of the quantity. Taking the point of observation on the reflector, we end up
with the following integral equation

−Êdip
ûα (v)G

1

sε
(−γ̂ 2δα jC∇ûα∇û j · )Â

sct
û j (v) (14)

where the vector potential Â sct
û j (v) is defined in (12).

2.3. Solution of the Integral Equation

Combining Eqs. (14) and (12) we write the integral equation as

−Êdip
ûα (v)G

1

sε
(−γ̂2δαjC∇ûα∇û j · )T jk �

v′∈�

Ĝ(v �v′)T̃kβ Ĵ rfl
ûβ(v′ ) dA(v′) (15)

in which we have defined the following known and unknown quantities

Ĵ rfl
ûβ

(v)G�Ĵ
rfl
x (v)

Ĵ rfl
φ (v)� , Êdip

ûα (v)G�Ê
dip
x (v)

Êdip
φ (v)� (16)

the matrices

T̃kβG�
1 0

0 −sin(φ )

0 cos(φ )
� , T jkG�

1 0 0

0 cos(φ ) sin(φ )

0 −sin(φ ) cos(φ )
� , δα jG�1 0 0

0 0 1� ,

(17)

and the gradient divergence operator

∇ûα∇û j ·G� ∂2
x

1

r
∂x∂r r

1

r
∂x∂φ

1

r
∂φ ∂x

1

r2
∂φ ∂r r

1

r2
∂2
φ � . (18)
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Note that the T̃ is a reduced form of T−1, the inverse of T. Equation (15) is
solved numerically using a discretization procedure as suggested by Zwam-
born and Van den Berg [1]. Therefore we approximate the differential oper-
ator of Eq. (18) by a finite difference operator [2]. Furthermore the plate
domain is discretized into subdomains �mn as shown in Figure 2, viz.

�mnG{v∈�3 �xmA1FxFxm , rGa2 , φnA1FφFφn}, (19)

for

xmGm∆x, for mG−M, . . . , M, (20)

φnGn∆φ , for nG−N, . . . , N. (21)

The quantities Êdip
ûα (v) and Ĵ rfl

ûα (v) are defined on a staggered grid as shown
in Figure 2,

Êdip
ûα (v)G�Ê

dip
xmn

Êdip
φmn

�G�Ê
dip
x (m∆x, a2 , (nA

1
2)∆φ )

Êdip
φ ((mA1

2)∆x, a2 , n∆φ )� (22)

for mG−M, . . . , M and nG−N, . . . , N,

Ĵ rfl
ûβ (v)G�Ĵ

rfl
xmn

Ĵ rfl
φmn

�G�Ĵ
rfl
x (m∆x, a2 , (nA

1
2)∆φ )

Ĵ rfl
φ ((mA1

2)∆x, a2 , n∆φ )� (23)

for mG−M, . . . , M and nG−N, . . . , N.
The consequently obtained discretized integral equation is solved using

a FFT Conjugate Gradient method as in [1]. Therefore we replace our
integral equation by an operator equation, viz.

fûαG(Lj)ûα , (24)

Figure 2. The discretization of the plate domain � into subdomains �mn .
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where fûα is obtained from the known incident wavefield, and (Lj)ûα the oper-
ation L applied on the electric surface current density j on the reflector.
Furthermore, we define the L2 norm via the inner product of two vectorial
quantities in the spatial domain �, viz.

��uûα ��2�G〈uûα , ūûα 〉�

G ∑
MA1

mG−MC1
∑
N

nG−NC1

ux;mnūx;mna2∆x∆φ

C ∑
M

mG−MC1
∑

NA1

nG−NC1

uφ ;mnūφ ;mna2∆x∆φ , (25)

in which the overbar denotes the complex conjugate. To quantify the
residual fûαA(Lj)ûα for Eq. (24) we define the error norm

rûαG��fûαA(Lj)ûα��� . (26)

Finally, the normalized error function ERR which is minimized is defined
as

ERRG
��rûα ���

��Êdip
ûα ���

. (27)

2.4. Numerical and Experimental Results

Simulations are carried out to design an optimal configuration. The
dipole is positioned at a radial distance of approximately 0.05 m. The reflec-
tor is positioned at the same radial distance and curved over approximately
150° and we use 26 cells in the x-direction and 16 cells in the φ -direction.
The system is embedded in a non-conducting medium, σG0, with relative
permittivity ε rG80. Computations are carried out for the 100 MHz compo-
nents of the electromagnetic wavefields and the iterative process is stopped
when the normalized error satifies ERR⁄ 0.01. In Figure 3 we present the
normalized error as a function of the number of iterations. The results for
the electric surface current densities are shown in Figure 4. From this figure
we observe that the components of the current densities normal to the edges
vanish, as we expect. The components tangential to the edges tend to large
values. Theoretically, they should grow to infinity if the element size was
taken infinitely small. This is avoided since a finite element size is taken,
and the average value over this element is computed.

Using these surface currents, we compute the scattered and total elec-
tric wavefields. In Figures 5(a) and 5(b) the total electric wavefield in the
plane xG0 and yG0 are shown. Clearly visible is the effect of the presence
of the reflector on the radiation pattern of a dipole. However, the aim is
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Figure 3. The normalized error ERR as a function of the number of iterations.

not only to disturb the omni-directional radiation pattern of an electric
dipole but also to increase penetration into the subsurface by focusing the
wavefield. Therefore it is interesting to compute the gain factor �E tot���Edip �,
as shown in Figures 6(a) and 6(b).

Based on this design a prototype antenna system is built for experimen-
tal verification of the antenna model. The radiation pattern of this prototype

Figure 4. The electric surface current density at the surface of the reflector: (a) the absolute
value of Jx and (b) the absolute value of Jφ .
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Figure 5. The computed total electric wavefield in the plane (a) xG0 and (b) yG0.

Figure 6. The normalized electric wavefield, �E rel (x)�G�E tot(x)���Edip(x)�, in the plane (a) xG0
and (b) yG0.

is measured at a radial distance of rG0.3 m in the plane xG0. In Figure 7
the measured and computed radiation patterns are shown. Both curves are
normalized by putting their maximum values to unity. We observe an excel-
lent agreement between both curves.

3. Imaging Based on Back Propagation

The imaging algorithm described in this section is based on a decon-
volution of the measured data for the previously computed radiation pattern
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Figure 7. The computed (solid line) and measured (crosses) normalized radiation pattern.

of the antenna system. Starting with the reciprocity theorem an integral
equation is derived which describes the change of impedance of the antenna
system as a function of the change in contrast in the background medium.
An approximate solution of this integral equation, and consequently a 3D
image of the subsurface, is obtained via a one step inversion procedure, the
so called back propagation.

3.1. Change of Antenna Impedance Due to Anomalies in the
Background Medium

The reciprocity theorem [3] is used to correlate two field states occur-
ring in the same spatial domain �. In Figure 8, the two states A and B are
shown as described in Table 1. In state A, the closed surface ∂� with normal
νi encloses the source free spatial domain � which is a homogeneous back-
ground medium that is, in addition, linear, time-invariant, instantaneously
reacting, locally reacting, and isotropic in its electromagnetic behavior. The
medium is described by the parameters η̂bg(x),

η̂bg(x)Gσbg(x)Csεbg(x), (28)

and ζ̂ ,

ζ̂Gsµ0 . (29)
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Figure 8. Two states of the same spatial domain � with boundary ∂� and with inaccessible
volume action antenna source domain �src�⊂�. The source domain contains a receiving
and transmitting antenna. In state A (a) the electromagnetic properties are η̂A(x)Gη̂(x) and
ζ̂AGζ̂ , and state B (b) has the same background medium and a scattering domain �sct⊂�,
with η̂B(x)Gη̂sct(x) and ζ̂BGζ̂ .

The domain encloses an inaccessible volume action antenna source domain
�src�⊂� which contains the transmitting and receiving antennas. The only
fields present are the electromagnetic background wavefields. In state B, we
have the same spatial domain � and the same medium parameters where in
this case the boundary ∂� also encloses a domain �sct, due to the presence
of an object with medium parameters η̂sct(x) and ζ̂ .

For these two states the reciprocity theorem is written as

εm,r,p �
x∈∂�

νm [ÊA
r (x)ĤB

p (x)AÊB
r (x)ĤA

p (x)] dA

−εm,r,p �
x∈∂�src

νm [ÊA
r (x)ĤB

p (x)AÊB
r (x)ĤA

p (x)] dA

G�
x∈�

A[ηB
r,k(x)AηA

k,r(x)]ÊA
r (x)ÊB

k (x) dV. (30)

Table 1. Description of the States A and B for the Spatial Domain �

state A state B

{ÊA
p , ĤA

q }G{Êbg
p , Ĥbg

q } {ÊB
p , Ĥ

B
q}G{Ê tot

p , Ĥ tot
q }G{Êbg

p CÊ sct
p , Ĥbg

q CĤ sct
q }

{η̂A, ζ̂A}G{η̂bg, ζ̂} {η̂B, ζ̂B}G{(η̂sct, ζ̂ ), (η̂bg, ζ̂ )}{x∈�sct, x∉�sct}

{ĴA
p , K̂A

q }G{0, 0} {ĴB
p , K̂

B
q}G{0, 0}
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The first integral over the outer boundary vanishes, since in both states the
medium parameters outside ∂� are the same, and since there are no sources
outside ∂�. The boundary integral over the source domain can be approxi-
mated as follows by putting, in the low frequency range,

Êi (x)G−∂i φ̂ (x), (31)

where φ̂ is the electric potential. Using Stokes’ theorem the integral over the
boundary of the source domain is obtained as

εm,r,p �
x∈∂�src

νm [ÊA
r (x)ĤB

p (x)AÊB
r (x)ĤA

p (x)] dA

G�
x∈∂�src

νm [φ̂ A(x)η̂B (x)ÊB
m (x)Aφ̂ B (x)η̂A(x)ÊA

m(x)] dA. (32)

The antennas in the source domain are described as perfect conductors
which form an N-ports system, where each termination port has a surface
�α , for αG1, . . . , N. Since the electric potential φ̂A,B(x) is constant over
such a termination port, each terminal α has a constant potential V̂α . At
each port the Maxwell current density Ĵk(x)CsD̂k(x) is dominated by the
electric current density Ĵk(x) in the low frequency approximation and conse-
quently the electric line current density Iα is used. So from the constitutive
relations in combination with the electromagnetic boundary conditions the
right-hand side of Eq. (32) is written as a finite summation over the
terminals, i.e.,

�
x∈∂�src

νm [φ̂A(x)η̂B (x)ÊB
m (x)Aφ̂ B (x)η̂A(x)ÊA

m (x)] dA

G ∑
N

αG1
�
x∈�α

νm [φ̂ A(x)ĴB
m (x)Aφ̂ B (x)ĴA

m (x)] dA

G ∑
N

αG1

[V̂A
α Î B

αAV̂B
α Î

A
α ]. (33)

The electric potentials and line current densities in the antennas are
coupled via the impedance matrix Ẑαβ as

V̂αGẐαβ Îβ for {α , β}G1, . . . , N. (34)

Combining Eqs. (30), (32), and (33) with the state descriptions as formulated
in Table 1 results in

δẐαβ ÎA
α Î

B
βG−�

x∈�

[ηB (x)AηA(x)]ÊA
k (x)ÊB

k (x) dV, (35)
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where δẐαβ is the difference in impedance between two states,

δẐαβGẐA
αβAẐB

αβ . (36)

The electric field strength is linearly dependent on the electric line current
density ÎA,B

α , so

ÊA,B
k (x)GêA,B

α ;k (x)ÎA,B
α (37)

in which êA
α ;kGêbg

α ;k and êB
α ;kGêtot

α ;k are the electric field strengths caused by
their unit current densities. Substitution of Eq. (37) in Eq. (35) gives an
integral equation describing the change of impedance, δẐαβ , due to an
anomaly δη̂(x)Gη̂bg(x)Aη̂sct(x) in the background medium, viz.,

δẐαβG�
x∈�

δη̂(x)êbg
α ;k (x)êtot

β ;k (x) dV. (38)

This integral equation will serve as a starting point for the imaging
algorithm.

3.2. Measuring in Bistatic Mode

Based on the design presented in Section 2 of this chapter a bistatic
antenna system has been built. Applying Eq. (34) to this setup, (NG2), we
obtain the following equation

V̂2GẐ21Î1CẐ22Î2 , (39)

where V̂2 represents the voltage measured at the receiver, Î1 the electric
source current at the transmitter, Ẑ21 the mutual impedance of the transmit-
ter and the receiver and Ẑ22 the self impedance of the receiver. Note that
we assume the medium to be reciprocal and consequently Ẑ12GẐ21. Since
the receiver voltage is measured over an open end port, the current through
the receiver equals zero, Î2G0. Therefore the measured voltage at the
receiver, V̂2, in Eq. (39) equals

V̂ recGẐ12Î
trans (40)

since V̂2GV̂rec and Î1GÎ trans.
In Figure 9 it is shown how in a bistatic setup measurements take

place at ‘‘discrete’’ positions v(k) for the system, viz.

v(k)G(x (k), 0, φ (k)) (41)
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Figure 9. The setup in bistatic mode.

Adapting integral equation (38) for these discrete positions and combining it
with the results shown in Eq. (40), we obtain the following integral equation

δV̂ rec(v(k))

Î trans
G�

v∈�

δη(v)Ŝ(v �v(k)) dV. (42)

in which the sensitivity function Ŝ(v �v(k)) describes the combination of the
transmitter and receiver patterns of the antenna system,

Ŝ(v �v(k))GŜ(xAx (k), r, φAφ (k))

Gê trans;bg
j �x−x (k)C

1

2
d, r, φ−φ (k)�ê rec;bg

j �x−x(k)−
1

2
d, r, φ−φ (k)� , (43)

where ê trans;bg
j (v) and ê rec;bg

j (σ) are the electric wavefields in the background
medium produced by an electric unit current at the transmitter and the
receiver position, respectively. These radiation patterns are approximately
equal to the patterns computed at the central frequency of 100 MHz. Note
that the Born approximation is used to approximate ê rec; tot

j (v) by ê rec;bg
j (v).

Besides, we assume the contrast to be frequency independent, δη̂(v)G
δη(v).

In view of the presence of convolution and periodicity in the angular
direction, we take advantage of the properties of discrete Fourier series.
This series is defined as

f (φ )G ∑
S

nG−S
f (n) e inφ, (44)
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where

f (n)G
1

2π �
2π

φG0

f (φ )e−inφ dφ . (45)

Applying these discrete Fourier transforms to Eq. (42) leads to decoupled
equations in the discrete angular Fourier domain

δV̂ (n);rec(x (k))

Î trans
G�

S

xG−S
�
S

rG0

δη(n)(x, r)Ŝ (n)(xAx(k), r)r dr dx,

∀nG−S, . . . ,S, (46)

where

Ŝ (n)(x, r)G
1

2π �
2π

φG0

e−inφŜ(x, r, φ ) dφ , (47)

δV̂ (n);rec(x (k))G
1

2π �
2π

φG0

e−inφδV̂ rec(x (k), φ ) dφ , (48)

and

δη(n)(x, r)G
1

2π �
2π

φG0

e−inφ δη(x, r, φ ) dφ . (49)

Replacing the latter integrals by finite summations using a trapezoidal inte-
gration rule, we arrive at

Ŝ (n)(x, r)G
1

2π
∑
M

mG1

e−inm∆φ (k)
Ŝ(x, r, m∆φ (k))∆φ (k), (50)

δV̂ (n);rec(x (k))G
1

2π
∑
M

mG1

e−inm∆φ (k)δV̂ rec(x (k), m∆φ (k))∆φ (k), (51)

and

δη(n)(x, r)G
1

2π
∑
M

mG1

e−inm∆φ (k) δη(x, r, m∆φ (k))∆φ (k), (52)

where M∆φ (k)G2π . After an estimate in the angular Fourier domain for
δη(n)(x, r) for −N⁄n⁄N is obtained, an image of the contrast δη(x, r, φ ) in



342 van Dongen et al.

the spatial domain is derived from

δη(x, r, φ )G ∑
N

nG−N
δη(n)(x, r) e inφ. (53)

3.3. Imaging in Bistatic Mode

In order to obtain an estimate for δη(n)(v) we define the following
error functional F(n),

F(n)G∑
x(k)
∑
ω
�δV̂

(n);rec(x (k),ω )

Î trans

A�
S

xG−S
�
S

rG0

δη(n)(x, r)Ŝ (n)((x, r) � (x (k), r),ω )r dr dx�
2

∆x (k)∆ω. (54)

Using the following notation in the functional F(n) for δη(n)(x, r)

δη(n)(x, r)Gα (n)∆η(n)(x, r), (55)

where α (n) is a real constant and ∆η(n)(x, r) is an update direction, this func-
tional tends to its minimum when α (n) satisfies

α(n)G

ℜ�∑
x(k)
∑
ω

δV̂ (n);rec(x (k),ω)

Î trans ��
S

xG−S
�
S

rG0

∆η(n)(x, r)Ŝ (n)((x, r)�(x(k), r),ω)r dr dx	*

∑
x (k)
∑
ω
��

S

xG−S
�
S

rG0

∆η(n)(x, r)Ŝ (n)((x, r) � (x (k), r),ω)r dr dx�
2

.

(56)

We interchange the summations and the integrations in the numerator in
the right-hand side of this equation. Then we observe that, apart from a
constant, this numerator is maximized by taking the update direction to be

∆η(n)(x, r)G∑
x(k)
∑
ω

(Ŝ (n)(xAx (k), r,ω ))*
δV̂ (n);rec(x (k),ω )

Î trans
. (57)

Substituting this direction in the numerator of the right-hand side of Eq.
(56) we observe that the constant α (n) equals

α (n)G
�
S

xG−S
�
S

rG0

�∆η(n)(x, r) �2 r dr dx

∑
x(k)
∑
ω
��

S

xG−S
�
S

rG0

∆η(n)(x, r)Ŝ (n)(xAx(k), r,ω )r dr dx�
2
. (58)
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Note that α (n) is indeed real and independent of the parameters x, r, and ω .
Furthermore, it is noted that the update direction of Eq. (57) represents
the back propagation of the data from the data domain to the domain of
observation. A summation of the update directions over all angular contri-
butions leads to a first image of the contrast δη(v) in the subsurface, viz.

δη(v)G ∑
N

nG−N
∆η(n)(x, r). (59)

An improved image is obtained when we take into account the minimization
constant α (n). In that case δη(v) is obtained via

δη(v)G ∑
N

nG−N
α (n)∆η(n)(x, r). (60)

This back-propagation step yields a first image. For further charac-
terization full inversion is needed [4]. Note that the minimization procedure
obtained above is in fact the initial iteration of a conjugate gradient inver-
sion method. By applying such a scheme, further improvements may be
achieved, as shown previously for a synthetic example [5]. In the next sub-
section we present some results based on the two imaging procedures of
Eqs. (59) and (60). The former procedure is denoted as the back propagation
algorithm, while the latter is denoted as the minimized back propagation
algorithm.

3.4. Imaging Results

Both the back propagation and the minimized back propagation
algorithms are tested on synthetic and measured data. In both cases
‘‘measurements’’ take place at 64 angular positions.

First we consider a synthetic case, where the homogeneous back-
ground medium is characterized by the parameters σG0 and ε rG80. At a
radial distance of two meters in the plane xG0 a point scatterer is pos-
itioned with medium parameters ε rG160 and σG1 S�m. Synthetic data are
obtained using Eq. (42). Results from both image processing procedures are
given in Figures 10(a) and 10(b). In these figures the computed contrast
δη(v) is shown in the plane xG0. Comparing the results of the two pro-
cedures, we observe the expected increase in resolution in the angular
direction.

Secondly, we consider a field data set where the data are obtained
with the antenna system positioned in a swimming pool. As a scattering
object, a metallic gas bottle is positioned in front of the system at a radial
distance of two meters. Since the source wavelet and thus the frequency
spectrum of the electric current density at the transmitter is unknown, we
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Figure 10. The computed contrast obtained from synthetic data, via (a) back propagation:
δη(n)(x, r)G∆η(n)(x, r) and (b) minimized back propagation: δη(n)(x, r)Gα (n)∆η(n)(x, r). The
crosses denote the position of the antenna system in the center and the object at a radial
distance of two meters.

simply take Î trans to be equal to one in the image procedure. The measured
voltage, contains the signals due to reception of both the direct and the
scattered electromagnetic waves. These data are corrected for the direct
wave, by subtracting the first trace, φG0, from the data set of each trace.
The corrected data, shown in Figure 11, are used as input data for both the
back propagation and the minimized back propagation algorithm. The
image results are shown in Figures 12(a) and 12(b). The figures show the
computed contrast for the plane xG0.

Comparing the results of the synthetic and the measured example we
observe a similar behavior of the angular dependence of the image
distributions.

There are great similarities between the images based on synthetic
and measured data, especially in the angular direction. The blurring effect
in the radial direction in the image from the measured data is caused
through antenna ringing. This effect should be but isn’t taken into account
in the transmitter current where as source wavelet an impulse function in
time is taken. Therefore a deconvolution for the wavelet is omitted and
consequently the algorithm will ‘‘interpret’’ the long ringing wavelet as being
caused by several reflections from a couple of objects behind each other.

4. Conclusions

In this paper we have discussed the antenna design of a directional
borehole radar system. The modeling of the shielded antenna of this radar
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Figure 11. The measured receiver voltage as a function of time and angular position.

system was formulated as an integral equation for the unknown electric
surface current density at the surface of the perfectly conducting reflector.
This integral equation was numerically solved using an iterative conjugate
gradient method; its efficiency was enhanced using a FFT routine for the
computation of the convolution in the antenna direction. Based on the
modeling results a prototype antenna system was built. The measured radi-
ation pattern was compared with the computed one and they were in close
agreement. Furthermore, a simple imaging algorithm based on back propa-
gation has been proposed. Using the computed radiation pattern in this
imaging procedure, a deconvolution of the radiation pattern in the angular
direction was carried out. Finally we have improved this image procedure
by carrying out a minimization procedure where the back propagation is
used as an update direction. The result is an increase in angular resolution.
We expect improved resolution in radial direction when we take the correct
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Figure 12. The computed contrast for measured data based on (a) back propagation,
δη(n)(x, r)G∆η(n)(x, r), and (b) minimized back propagation, δη(n)(x, r)Gα (n)∆η(n)(x, r). The
crosses denote the position of the antenna system in the center and the object at a radial
distance of two meters.

source wavelet. In practice a proper estimate of this source wavelet is diffi-
cult to obtain.
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