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1. Introduction

In this paper we present the simulation and design of an antenna system for
a borehole radar. To obtain a directional radiation pattern the transmitting
dipole is shielded with a reflector. The generated transient wavefield, with
a centre frequency of 100 MHz, is reflected in the desired direction by a
perfectly conducting cylindrically curved plate. The radiation pattern of
this scattered wavefield is computed by solving the integral equation for the
unknown electric surface current at the reflector. The reflector can have
either a circular cylindrical shape or a parabolic cylindrical shape. Once
the electric current distributions at the dipole and the reflector are known,
the radiated wavefield can be represented by an integral over the wire and
the curved plate. A prototype has been built and the simulated data are
compared with experimental results.

2. Antenna configuration

An incident wavefield from an electric dipole is scattered by a perfectly
conducting cylindrically curved plate with an area A. This plate may be
either circular cylindrical or parabolic cylindrical. We therefore define the
domain A in a general orthogonal cylindrical coordinate system as,

A = {vk ∈ R3| − c1 < v1 < c1, v2 = c2,−c3 < v3 < c3} , (1)

see Figure 1. In this system the components of a vector u is denoted as uvi ,
where as in the Cartesian system these are written as uxi . Consequently,
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ê
¯v2ê
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Figure 1: (a) The antenna configuration and (b) the coordinate systems.

a matrix T can be defined as the matrix which transforms quantities from
the cylindrical into the Cartesian system and T

−1 as the inverse.
The plate is embedded in a homogeneous background medium, with

permittivity ε, permeability µ and electrical conductivity σ. The analysis
is carried out in the frequency domain with temporal Laplace transform
parameter s = −iω.

3. Integral equation

The scattered wavefield, Esct
i (vk), is defined as the difference between the

total wavefield, Ei(vk), and the incident wavefield, E inc
i (vk), and is repre-

sented by

Esct
xi
(vk) =

1

sε

(

−γ2δi,j + ∂xi∂xj ·
)

∫

v′

k
∈A

G(vk|v
′
k)Jxj ,T (v

′
k)dA . (2)

Here γ2 = s(sε+ σ)µ, δi,j the Kronecker delta tensor, ∂xi∂xj · the gradient-
divergent operator, G(vk|v

′
k) is the free-space Green function, and Jxj ,T (v

′
k)

the electric volume current density for v′k ∈ A. The subscript T is added
to emphasise that only components tangential to the surface of the plate
domain A are used.

At the surface of the reflector A, the boundary conditions require that
tangential components of the electric field vector vanish. Together with
the definitions of the transformation matrices, we then obtain the integral
equation,

−E inc
vα,T

(vk)=
1

sε

(

−γ2δα,j+∂vα,T∂vj ·
)

T
−1
jm

∫

v′

k
∈A

G(vk|v
′
k)TmβJvβ ,T (v

′
k)dA, (3)

with E inc
vα,T

(vk) = {E inc
v1

(vk), E
inc
v3

(vk)} and Jvβ ,T (vk) = {Jv1(vk), Jv3(vk)},
for {vk, v

′
k} ∈ A. Note that we have used Einstein’s summation convention,

where the Greek indices α and β can only be one or three. Note that integral
equation (3) contains only two unknowns, Jv1(vk) and Jv3(vk), while E

inc
v1

(vk)
and E inc

v3
(vk) are known.



4. Numerical Solution of the integral equation

Integral equation (3) can be solved numerically using a standard Conjugate
Gradient (CG) FFT method [Zwamborn and Van den Berg, IEEE MTT,
39, 953-960, 1991]. Consequently, the domain A is discretised in (2M+1)×
(2N + 1) equally spaced meshes of size ∆A. Further the following operator
notation is used,

(Lu)vα;m,n = fvα;m,n , (4)

where the quantities uvα;m,n and fvα;m,n are the discrete surface current
values and the discrete incident electric field values, respectively, viz.,

uvα;m,n = Jvα,T ;m,n fvi;m,n = E inc
vα,T ;m,n . (5)

The operator (Lu)vα;m,n follows directly from equation (3). The adjoint of
the operator (Lu)vα;m,n is defined through the inproduct of two vectors,

〈rvα , (Lj)vα〉A = 〈(L?r)vα , jvα〉A , (6)

which can be obtained by introducing the norm of two vectors vα as,

‖vα‖
2
A
= 〈vvα , vvα〉A =

∑

p,q

(vv1;p,qvv1;p,q + vv3;p,qvv3;p,q)∆A , (7)

where the overbar denotes the complex conjugate. With the above defini-
tions we are now able to apply a CG FFT iterative scheme to solve the
equations. Once the normalized error ERR is small enough,

ERR =
‖(Lj)vα − E inc

vα
‖A

‖E inc
vα
‖A

, (8)

the approximate solution, jvα = (Jv1;m,n, Jv3;m,n), may be used to calculate
the scattered electric wavefield in all space via equation (2).

5. Results and discussion

In order to obtain an ‘optimal’ directional antenna configuration, we have
carried out a number of computations. For the case where the reflector is
circular cylindrical we have found an ‘optimal’ configuration which has been
prototyped. For this configuration, the measured results will be compared
with the computed ones.

For this particular configuration, the electric dipole has a length of
0.16 m, while the reflector has dimensions of 0.32 m in the direction paral-
lel to the dipole axis and 0.11 m in the angular direction. The reflector is
located at a distance of 0.09 m from the dipole axis. This antenna system is
embedded in fresh water. In the computations we have taken the medium
to be a non-conducting medium with a relative permittivity of 80 and a
relative permeability of one. We assume a cosine-shaped electric current
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Figure 2: The radiation pattern at x1 = 0 (left) and x3 = 0 (right).
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Figure 3: The radiation pattern measured (solid line) and computed (dashed
line) in the plane at x1 = 0 for fixed radial distance of v3 = 0.30 m.

distribution, with maximum amplitude in the center and zero at both ends
of the dipole. The reflector is discretised into 24 elements in the dipole
direction and 16 elements in the angular direction. The iterative process is
stopped as soon as the normalised error is ERR < 0.01.

In Figure 2 the computed radiation pattern, 10 log(‖E‖/‖E inc‖), in the
plane x1 = 0 and in plane x3 = 0 are plotted. In Figure 3 the measured
radiation characteristic (solid line) and the computed one (dashed lined)
are shown. The electric field was measured with a 100 MHz electric dipole
antenna in the plane x1 = 0 and v2 = 0.30 m. Both measurements (voltages)
and computations (electric field) are normalized with a constant factor,
such that the least-square differences between the measured and computed
quantities are minimized. Note the excellent agreement of the two results.

From our results we conclude that, even in the low-frequency range, a
directional radiation pattern can be achieved by shielding an electric dipole
antenna by an appropriately designed reflector. In the low-frequency range,
the electric dipole is located outside the focal point of this reflector.


